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Background: For the most advanced nodes, edge placement errors are typically dominated by stochastics, 

necessitating a rigorous stochastics approach to modeling and measuring edge placement errors and their 

contributors. 

Aim: In this work, a new approach to developing an edge placement error (EPE) model useful for lot 

dispositioning or EPE budgeting is presented. 

Approach: As an example of the proposed approach, a rigorous EPE model is developed for the case of 

complementary lithography, where dense lines and spaces are cut with a second patterning step.  This model 

gives rise to the generation of an Overlay Process Window, the range of overlay errors that can be tolerated 

in the presence of stochastics critical dimension and placement errors of the individual layers. 

Results: The resulting model uses only measurable quantities and allows the prediction of EPE-based failure 

rates for the purpose of lot dispositioning.  One interesting outcome is that Angstrom-level changes in the 1-

sigma stochastics terms produces nanometer-level changes in the overlay process window. 

Conclusions: This new EPE modeling approach provides a more rigorous and accurate method for lot 

dispositioning and EPE budgeting than prior approaches. 
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1. INTRODUCTION 

 

Historically, lithographers have divided their time between two very important pursuits:  control of critical 

dimensions (CD) and control of overlay.  In the past these tasks were often independent, since at that time 

process errors affecting CD did not significantly impact overlay, and vice versa.  This pleasant division of 

labor changed in the era of low k1, as small aberrations, stage non-idealities, and other previously second-

order effects began affecting both CD and overlay in a coupled way.  In the last 15 years or so we have added 

Edge Placement Error (EPE) to our list of concerns, the combination of CD errors and placement errors of a 

feature that couple to form an edge error that can ruin the performance or yield of a semiconductor device.1  

This has been especially true for multiple patterning processes such as complementary lithography. 

 

 More recently, the demands of ever-shrinking EPE budgets have been confounded by a new reality:  

stochastics contributions to EPE are growing rapidly.2,3  At today’s advanced nodes, stochastics can make up 

more than 50% of the edge placement errors on the wafer.4  This has given rise to a need for methods to 

properly account for stochastics in EPE budgets.  The approach developed by Mulkens2 is widely used, but 

its inclusion of stochastics in not as rigorous as needed.   

 

 Additionally, stochastics considerations are needed for more than just EPE budget calculations, they 

are also needed when considering how to use overlay data in high volume manufacturing.  There are two 

main classical overlay measurement use cases:  lot dispositioning and correctable determination and 

feedback.  For lot dispositioning, overlay measurements lead to an estimation (either direct or indirect) of 

yield loss due to overlay errors.  If the predicted yield loss is too high, we rework the wafers rather than send 

them on for subsequent processing.  For correctable feedback, overlay data is modeled and the model 

parameters are interpreted as correctables for the scanner: changes in scanner settings that would reduce the 

overlay error if the wafer(s) were to be reworked, and assumed to also improve subsequent lots.  For both of 



these use cases, important decisions could be improved if stochastics metrology data were incorporated 

properly into the decision-making process. 

 

 In this paper we will provide an example of stochastics-aware overlay + EPE lot dispositioning.  The 

“Go, No-Go” decision for a lot will be made using the traditional scribe-line and/or in-die overlay data, but 

supplemented with stochastics metrology data such as local CD uniformity (LCDU) and local pattern 

placement error (LPPE) measurements on the individual patterning layers.  Proper use of stochastics data 

dramatically affects our understanding of the impact of overlay errors on the probability of die failure, and 

thus on the disposition decision.  The use of the stochastics-aware disposition approach to be presented here 

can benefit the fab by either reducing the number of bad wafers that are not reworked, or reducing the rework 

of good wafers, or both. 

 
2. METHOD AND THEORY: AN EXAMPLE 

 

There are many lithography layers for different technology nodes and processes where a stochastics approach 

to overlay and EPE analysis would be beneficial.  Here we will pick one example case to illustrate our 

method, though it is widely applicable to all layers and use cases.  In the following we will analyze a 

patterning step in which an EUV single patterning cut-mask is used to cut an array of lines and spaces (for 

example, made with self-aligned multiple patterning).  We will first develop a geometric model for this 

example, then interpret the model from a stochastics perspective. 

 

2.1 Geometric Overlay Model 

 

Our geometric edge placement error pass/fail criterion will be based on measurable metrics such as CD-SEM 

and optical overlay data.  A generic depiction of this multiple patterning test case is shown in Figure 1.  An 

SADP (self-aligned double patterning) pair of lines and spaces is used such that the two lines and the two 

spaces may have different statistical properties.  In our example case, only one line is at work but the two 

spaces to either side of that line (labeled Mandrel and Space in the figure) may be different statistically.  

Generalization of the approach to single patterning or self-aligned quadruple patterning (SAQP) formation 

of the lines and spaces will also be briefly examined below. 

 

 The geometry of Figure 1 defines four distances, labeled CD1 – CD4, between an edge of the cut 

feature and an edge of the line/space feature.  Four failure mechanism scenarios may be envisaged as follows: 

 

1. CD1 vanishes, producing an incomplete cut of the line 

2. CD2 vanishes, producing an incomplete cut of the line 

3. CD3 vanishes, where the cut reaches the line below 

4. CD4 vanishes, where the cut reaches the line above 

 

From symmetry, scenarios 1 and 2 will behave identically in the model we will develop below.  Scenarios 3 

and 4 will have an identical model, though with different input values due to the differences between the 

pitch/space above and the pitch/space below the line.  Therefore, we will describe only scenarios 1 and 3 

here.   

 

 



 

Figure 1:  Geometry of a generic line/space/mandrel pattern modified by an orthogonal cut feature. 

 

 Considering scenario 1, from geometric considerations,   

 

𝐶𝐷1 =
𝐶𝐷𝑐𝑢𝑡

2
−

𝐶𝐷𝑙𝑖𝑛𝑒

2
− 𝑂𝑉𝐿 (1) 

 

where 𝐶𝐷𝑐𝑢𝑡 is the vertical dimension of the cut feature, 𝐶𝐷𝑙𝑖𝑛𝑒 is the vertical width of a horizontal line and 

𝑂𝑉𝐿 is the vertical overlay error between the cut and line. We investigate failure by looking for circumstances 

that produce 𝐶𝐷1 ≤ 0, though other 𝐶𝐷1 criterion could be chosen without changing the method outlined 

below.  We will now reinterpret this geometric model as representing the mean values of distributions of CD 

and overlay.  We will assume that each of these parameters is statistically independent and of Gaussian 

distributions with standard deviations 𝜎𝐶𝐷𝑐𝑢𝑡
, 𝜎𝐶𝐷𝑙𝑖𝑛𝑒

, and 𝜎𝑂𝑉𝐿 respectively (Figure 2).  Under these 

assumptions, 𝜎𝐶𝐷1
, the standard deviation of our failure mechanism parameter, may be calculated by taking 

the variance of equation (1): 

 

𝜎𝐶𝐷1

2 =
1

4
(𝜎𝐶𝐷𝑐𝑢𝑡

2 + 𝜎𝐶𝐷𝑙𝑖𝑛𝑒

2 ) + 𝜎𝑂𝑉𝐿
2  (2) 

 

 



 

Figure 2:  Stochastics parameters participating in the calculation of CD1. 

 

 For scenario 3, from geometric considerations, 

 

𝐶𝐷3 = 𝑃2 −
𝐶𝐷𝑐𝑢𝑡

2
−

𝐶𝐷𝑙𝑖𝑛𝑒

2
+ 𝑂𝑉𝐿 = 𝐶𝐷𝑠𝑝𝑎𝑐𝑒 −

𝐶𝐷𝑐𝑢𝑡

2
+

𝐶𝐷𝑙𝑖𝑛𝑒

2
+ 𝑂𝑉𝐿 (3) 

 

where 𝐶𝐷𝑐𝑢𝑡, 𝐶𝐷𝑙𝑖𝑛𝑒, and 𝑂𝑉𝐿 and their variances are defined as above and 𝑃2 is the pitch of the line/space 

pattern (= 𝐶𝐷𝑙𝑖𝑛𝑒 + 𝐶𝐷𝑠𝑝𝑎𝑐𝑒).  We investigate failure in this case by looking for circumstances that produce 

𝐶𝐷3 ≤ 0.  Under these assumptions, 𝜎𝐶𝐷3
, the standard deviation of our failure mechanism parameter, may 

be calculated by the equation 

 

𝜎𝐶𝐷3

2 =
1

4
(𝜎𝐶𝐷𝑐𝑢𝑡

2 + 𝜎𝐶𝐷𝑙𝑖𝑛𝑒

2 ) + 𝜎𝑂𝑉𝐿
2 + 𝜎𝐶𝐷𝑠𝑝𝑎𝑐𝑒

2 + 𝐶𝑂𝑉(𝐶𝐷𝑙𝑖𝑛𝑒 , 𝐶𝐷𝑠𝑝𝑎𝑐𝑒) (4) 

 

where 𝐶𝑂𝑉(𝐶𝐷𝑙𝑖𝑛𝑒 , 𝐶𝐷𝑠𝑝𝑎𝑐𝑒) is the covariance of the line and space CD, which can be related to the 

correlation coefficient between the line and space 𝐶𝑂𝑅(𝐶𝐷𝑙𝑖𝑛𝑒 , 𝐶𝐷𝑠𝑝𝑎𝑐𝑒) as 

 

𝐶𝑂𝑉(𝐶𝐷𝑙𝑖𝑛𝑒 , 𝐶𝐷𝑠𝑝𝑎𝑐𝑒) = 𝜎𝐶𝐷𝑙𝑖𝑛𝑒
𝜎𝐶𝐷𝑠𝑝𝑎𝑐𝑒

𝐶𝑂𝑅(𝐶𝐷𝑙𝑖𝑛𝑒 , 𝐶𝐷𝑠𝑝𝑎𝑐𝑒) (5) 

 

 In a non-stochastic world the pitch can be assumed constant so that 𝜎𝐶𝐷𝑙𝑖𝑛𝑒
= 𝜎𝐶𝐷𝑠𝑝𝑎𝑐𝑒

 and 

𝐶𝑂𝑅(𝐶𝐷𝑙𝑖𝑛𝑒 , 𝐶𝐷𝑠𝑝𝑎𝑐𝑒) =  −1.  But in a world of stochastics, the left and right edges of both the line and the 

space can vary independently so that the pitch is not constant over the length scale of interest.  If we consider 

the line as made up of two edge positions e1 and e2, and the space as made up of edges e2 and e3 (with shared 

edge e2), then 

 

𝐶𝑂𝑉(𝐶𝐷𝑙𝑖𝑛𝑒 , 𝐶𝐷𝑠𝑝𝑎𝑐𝑒) = 𝐶𝑂𝑉(e2 − e1, e3 − e2)  

= 𝐶𝑂𝑅(e2, e1)𝜎𝐿𝐸𝑃𝐸1
𝜎𝐿𝐸𝑃𝐸2

+ 𝐶𝑂𝑅(e2, e3)𝜎𝐿𝐸𝑃𝐸2
𝜎𝐿𝐸𝑃𝐸3

− 𝐶𝑂𝑅(e1, e3)𝜎𝐿𝐸𝑃𝐸1
𝜎𝐿𝐸𝑃𝐸3

− 𝜎𝐿𝐸𝑃𝐸2

2  
(6) 

 



Thus, this term in our equation will be made up of three local edge placement error (LEPE) terms, one for 

each of the three line/space edges, and three correlation terms, indicating how each edge is correlated with 

the others.5   

 

 For lines and spaces printed with single patterning we expect each of the edge correlations to be near 

zero.  Further, for uncorrelated edges with identical statistics, we expect 𝜎𝐶𝐷𝑠𝑝𝑎𝑐𝑒

2 = 𝜎𝐶𝐷𝑙𝑖𝑛𝑒

2 = 2𝜎𝐿𝐸𝑃𝐸2

2 .  Thus, 

for this case, we have 

 

𝐶𝑂𝑅(𝐶𝐷𝑙𝑖𝑛𝑒 , 𝐶𝐷𝑠𝑝𝑎𝑐𝑒) = −0.5  

𝐶𝑂𝑉(𝐶𝐷𝑙𝑖𝑛𝑒 , 𝐶𝐷𝑠𝑝𝑎𝑐𝑒) = −0.5𝜎𝐶𝐷𝑠𝑝𝑎𝑐𝑒

2  (7) 

 

 For SADP 𝐶𝑂𝑅(e1, e3) will be near zero, though this term may be non-zero for SAQP.  Also for 

SADP, 𝐶𝑂𝑅(e2, e1) (the correlation between the two edges of the line) may be moderately large whereas 

𝐶𝑂𝑅(e2, e3) is generally small.  In any case, all of these terms are measurable and can be included in our 

model.  For an idealized but extreme SADP case we can say that 𝜎𝐿𝐸𝑃𝐸1
= 𝜎𝐿𝐸𝑃𝐸2

, 𝐶𝑂𝑅(e1, e3) =

 𝐶𝑂𝑅(e2, e3) = 0, and 𝐶𝑂𝑅(e2, e1) = 1.  In this case, 𝐶𝑂𝑉(𝐶𝐷𝑙𝑖𝑛𝑒 , 𝐶𝐷𝑠𝑝𝑎𝑐𝑒) = 0.  For a still idealized but 

more reasonable SADP case we have 𝐶𝑂𝑅(e2, e1) = 0.8, with all other terms the same.  In this case, 

𝐶𝑂𝑉(𝐶𝐷𝑙𝑖𝑛𝑒 , 𝐶𝐷𝑠𝑝𝑎𝑐𝑒) = −0.2𝜎𝐿𝐸𝑃𝐸2

2 .  Further, these assumptions mean that 𝜎𝐶𝐷𝑠𝑝𝑎𝑐𝑒

2 = 2 ∗ 𝜎𝐿𝐸𝑃𝐸2

2  so that 

 

𝐶𝑂𝑉(𝐶𝐷𝑙𝑖𝑛𝑒 , 𝐶𝐷𝑠𝑝𝑎𝑐𝑒) = −0.1𝜎𝐶𝐷𝑠𝑝𝑎𝑐𝑒

2  (8) 

 

2.2 Estimation and Interpretation of Model Parameters 

 

While the geometric models above are straightforward, their interpretation and use require careful 

consideration.  When applying them, for example, to a wafer or lot rework decision in the fab, inputs to the 

model must be interpreted statistically and supplied by measurements.  Further, in a world where stochastics 

variations are a large (and often dominant) source of the variations of each term, their meaning and 

measurement are critical.  Consider 𝐶𝐷𝑙𝑖𝑛𝑒.  Its variation can be broken down into global and local variations, 

where global variation is the classical variation wafer-to-wafer, across the wafer, and across the scanner 

field/slit or die.  However, when interpreting failure rates, we can consider global variations as divided up 

between systematic signatures (fingerprints) across-wafer and across-field plus random variations.6  The 

systematic signatures will be considered as offsets in the mean value of 𝐶𝐷𝑙𝑖𝑛𝑒, while random global 

variations (essentially the residuals of the signatures) can be added statistically as 𝜎𝐺𝐶𝐷𝑈.  Local variations 

are the result of stochastics.  Then, the total CDU will be 

 

𝜎𝐶𝐷𝑈
2 = 𝜎𝐺𝐶𝐷𝑈

2 + 𝜎𝐿𝐶𝐷𝑈
2  (9) 

 

 The local CD uniformity (LCDU) needed here is not the variation of the CD of the entire line, but 

the variation of a line segment of length equal to the nominal cut feature width.  In other words, the variation 

of 𝐶𝐷𝑙𝑖𝑛𝑒 that we care about is over the region of overlap between the line and the cut.  The LCDU value 

(𝜎𝐿𝐶𝐷𝑈𝑙𝑖𝑛𝑒
) of the segment can be measured directly using a CD-SEM, but should be unbiased by removing 

the impact of SEM edge detection noise.7,8  An example is shown in Figure 3. 

 

 



 

Figure 3: Biased and unbiased LCDU of a 50-nm-long line segment as a function of the number of frames of averaging 

in the CD-SEM.  Results shown are from the 32-nm pitch after-etch line/space data of reference 8. 

 

 Alternately, the LCDU of this short line segment can be modeled based on measurement of the 

unbiased power spectral density (PSD) of the long line:9 

 

𝜎𝐿𝐶𝐷𝑈𝑙𝑖𝑛𝑒
≈ 𝜎𝐿𝑊𝑅√

(2𝐻 + 1)𝜉

𝐿
(1 −

𝜉

𝐿
) (10) 

 

where 𝜎𝐿𝑊𝑅 is the LWR of the infinitely long line, 𝐿 is the length of the line segment (that is, the nominal 

width of the cut feature), 𝜉 is the correlation length of the LWR from the long line (as obtained from its PSD), 

and 𝐻 is its roughness exponent.  Note that equation (10) assumes 𝐿 ≫ 𝜉, though more exact expressions are 

also available.9 In this work we will assume that 𝜎𝐿𝐶𝐷𝑈𝑙𝑖𝑛𝑒
 is an unbiased measurement of the appropriate 

length segment. 

 

 Similarly, 𝜎𝐿𝐶𝐷𝑈𝑐𝑢𝑡
 has global and local variation components, and the local CDU of the cut in the 

Y-direction can be measured with a CD-SEM and unbiased (the unbiased measurement should be used in all 

of the equations presented here).  The variation of the pitch (whether 𝑃1 or 𝑃2 ) has a global component often 

referred to as pitch-walking, caused by global variations in the self-aligned multiple patterning process, and 

represented in our case as the global variation in the space width.  The local component is the local CDU of 

the space (𝜎𝐿𝐶𝐷𝑈𝑠𝑝𝑎𝑐𝑒
) broken down into the same short segment as used to evaluate 𝜎𝐿𝐶𝐷𝑈𝑙𝑖𝑛𝑒

.  As mentioned 

for the scenario 3, we may also need to measure the correlation between edges over a length scale equal to 

the width of the cut feature. 

 

 With respect to overlay, there are at least two sources of metrology data which may be used to build 

estimates of the mean and variance of the distribution.  It has been shown by Arnold10 that pooled overlay 

data at the wafer level is by no means normal in its distribution, displaying both skewness and kurtosis. 

Therefore, the approach proposed here is to rely on a spatially varying line-to-cut overlay model generated 

by optical overlay metrology.  The modeled overlay will be our estimate of mean overlay 𝑂𝑉𝐿(𝑥, 𝑦), x and 



y representing positions within the wafer, field, or die.  In order to estimate the local variation of the overlay 

we must include the local pattern placement errors of the line and the cut.  

 

𝑂𝑉𝐿 = 𝑂𝑉𝐿(𝑥, 𝑦) + 𝑃𝑃𝐸𝑙𝑖𝑛𝑒 + 𝑃𝑃𝐸𝑐𝑢𝑡 (11) 

 

where  𝑃𝑃𝐸𝑙𝑖𝑛𝑒 and  𝑃𝑃𝐸𝑐𝑢𝑡 are the pattern placement errors of the line segment and cut feature respectively, 

with mean values that are typically zero or have a fixed value for a given pattern (the so-called non-zero 

offset)11.   

 

 Taking the variance of equation (11),  

 

𝜎𝑂𝑉𝐿
2 = 𝜎𝑅𝑒𝑠

2 +  𝜎𝐿𝑃𝑃𝐸𝑐𝑢𝑡

2 + 𝜎𝐿𝑃𝑃𝐸𝑙𝑖𝑛𝑒

2  (12) 

 

where 𝜎𝑅𝑒𝑠
2  is the variance of the residuals of the overlay model 𝑂𝑉𝐿(𝑥, 𝑦) and LPPE is the local pattern 

placement error.  The above relies on the assumption that each of these distributions are statistically 

independent from one another.  This assumption is reasonable since the cut and line features are produced by 

separate lithographic steps and the overlay model, while produced by the overlay between those steps, is the 

result of metrology performed on much larger features in the scribeline.  As with LCDU, LPPE of the line is 

measured for a segment of length equal to the width of the cut, and should be unbiased. 

 

 Combining all the sources of variations, both local and global, total variances of our failure 

parameters become 

 

𝜎𝐶𝐷1

2 =
1

4
(𝜎𝐺𝐶𝐷𝑈𝑐𝑢𝑡

2 + 𝜎𝐿𝐶𝐷𝑈𝑐𝑢𝑡

2 + 𝜎𝐺𝐶𝐷𝑈𝑙𝑖𝑛𝑒

2 + 𝜎𝐿𝐶𝐷𝑈𝑙𝑖𝑛𝑒

2 ) + 𝜎𝑅𝑒𝑠
2 +  𝜎𝐿𝑃𝑃𝐸𝑐𝑢𝑡

2 + 𝜎𝐿𝑃𝑃𝐸𝑙𝑖𝑛𝑒

2  (13) 

 

𝜎𝐶𝐷3

2 = 𝜎𝐶𝐷1

2 + 𝜎𝐺𝐶𝐷𝑈𝑠𝑝𝑎𝑐𝑒

2 + 0.9𝜎𝐿𝐶𝐷𝑈𝑠𝑝𝑎𝑐𝑒

2  (14) 

 

where equation (14) makes the previously described assumptions about edge-to-edge correlations that are 

reasonable for an SADP case.  Grouping the CDU terms from equation (13) for convenience: 

 

𝜎𝐶𝐷𝑈1

2 = 𝜎𝐺𝐶𝐷𝑈𝑐𝑢𝑡

2 + 𝜎𝐿𝐶𝐷𝑈𝑐𝑢𝑡

2 + 𝜎𝐺𝐶𝐷𝑈𝑙𝑖𝑛𝑒

2 + 𝜎𝐿𝐶𝐷𝑈𝑙𝑖𝑛𝑒

2  (15) 

gives 

𝜎𝐶𝐷1

2 =
1

4
𝜎𝐶𝐷𝑈1

2 + 𝜎𝑂𝑉𝐿
2  (16) 

 

2.3 Predicting Failures 

 

Our pass/fail criterion will be based on excursion count, the fraction of instances that fail to meet our 

specifications.  To estimate this, we will rely on the cumulative distribution function assuming a Gaussian 

distribution, which is the fraction of cuts (f) that fail based on one of the criteria. 

 

𝑓(𝑥0, 𝜇, 𝜎) =
1

√2𝜋𝜎
∫ 𝑒

−
(𝑥−𝜇)2

2𝜎2 𝑑𝑥
𝑥0

−∞

 (17) 

 



where x0 is our failure threshold, μ is the nominal (mean) value of either 𝐶𝐷1 or 𝐶𝐷3 as determined in 

equations (1) or (3) above, and σ2 is the variance as defined in equations (13) or (14) above.  For the case of 

the failure threshold set to zero, 

 

𝑓(𝑥0 = 0, 𝜇, 𝜎) =
1

√2𝜋𝜎
∫ 𝑒

−
(𝑥−𝜇)2

2𝜎2 𝑑𝑥
0

−∞

=
1

2
𝑒𝑟𝑓𝑐 (

𝜇

√2𝜎
) (18) 

 

In general, the fraction of failures will be small, meaning that 𝜇 ≫ 𝜎.  In this case, the complementary error 

function can be approximated as 

 

𝑓(𝑥0 = 0, 𝜇, 𝜎) =
1

2
𝑒𝑟𝑓𝑐 (

𝜇

√2𝜎
) ≈

𝜎

√2𝜋𝜇
𝑒

−
𝜇2

2𝜎2 (19) 

 

This approximation is off by 2.6% at a 1 part per billion failure rate, and off by 4% at the 1 part per million 

failure rate. 

 

 Obviously, the failure rate is controlled by 𝜎/𝜇, with larger values producing greater rates of failure.  

For example, 𝜎/𝜇 = 0.167 produces a 1 part per billion failure rate, while 𝜎/𝜇 = 0.210 produces a 1 part per 

million failure rate.  The exponential shape of the tail of the distribution means that small changes in 𝜎/𝜇 

can result in large changes in the failure rate.  It is also useful to express the failure rate on a log-scale.  Using 

the approximate expression from equation (19), 

 

𝑙𝑛(𝑓𝑎𝑖𝑙𝑢𝑟𝑒) ≈ 𝑙𝑛 (
𝜎

√2𝜋𝜇
) −

𝜇2

2𝜎2
 (20) 

 

When shown on a log-scale, failure rate will vary about quadratically as 𝜇/𝜎. 

 

 We can now define the 𝜎/𝜇 ratio for scenarios 1 and 2.  The difference between the scenarios will 

only be the sign of the OVL term. 

 

𝜎𝐶𝐷1

𝐶𝐷1
=

√
1

4
𝜎𝐶𝐷𝑈1

2 +𝜎𝑂𝑉𝐿
2

1

2
(𝐶𝐷𝑐𝑢𝑡−𝐶𝐷𝑙𝑖𝑛𝑒)−𝑂𝑉𝐿

,     
𝜎𝐶𝐷2

𝐶𝐷2
=

√
1

4
𝜎𝐶𝐷𝑈1

2 +𝜎𝑂𝑉𝐿
2

1

2
(𝐶𝐷𝑐𝑢𝑡−𝐶𝐷𝑙𝑖𝑛𝑒)+𝑂𝑉𝐿

 (21) 

 

Of course, failure scenarios 3 & 4 can be similarly defined. 

 

2.4 Applying the Models 

 

 With this formalism, we can now analytically predict the excursion count (fraction of failed cuts) for 

a given scenario.  In order to validate our formalism, we will compare the analytically predicted excursion 

count with the results of a stochastic simulation.  For convenience, we shall normalize the data and express 

all results in excursions per billion (ppb).   

 

 For our study, we will use the imec N7 node (termed iN7), which is roughly equivalent to the industry 

5 nm node.12,13  While the iN7 node has a range of pitch and CD values, we will assume SAQP for 28 nm 

pitch equal lines and spaces, followed by EUV cut patterning using nominally 20 x 28 nm slots.  Table 1 

summarizes all model parameters used for simulations and calculations in the next section.  Based on our 

experience, we have put into this table reasonable values for the global CD variation (GCDU), stochastic CD 



variations (LCDU), and stochastic pattern placement variations (LPPE), though of course different processes 

will have different values.  Nominal values for the mean CDs will be used, but global variations across the 

die and across the wafer would be accounted for as offsets to these nominal values. 

 

Table 1: Default model parameters used for simulations and calculations. 

Parameter name Parameter symbol Parameter value [nm] 

Line CD CDline 14 

Space CD CDspace 14 

Mandrel CD (same as Space CD) CDspace 14 

Cut CD CDcut 28 

Cut extension over space CD1 calculated by eq. (1) 

Cut extension over mandrel CD2 calculated by eq. (1) using 

opposite OVL sign 

Overlay (varied) OVL -7 to +7 

Line global CD uniformity 𝜎𝐺𝐶𝐷𝑈𝑙𝑖𝑛𝑒
 0.6 

Line local CD uniformity 𝜎𝐿𝐶𝐷𝑈𝑙𝑖𝑛𝑒
 0.7 

Line local pattern placement error uniformity 𝜎𝐿𝑃𝑃𝐸𝑙𝑖𝑛𝑒
 0.4 

Cut global CD uniformity 𝜎𝐺𝐶𝐷𝑈𝑐𝑢𝑡
 0.8 

Cut local CD uniformity 𝜎𝐿𝐶𝐷𝑈𝑐𝑢𝑡
 0.9 

Cut local pattern placement error uniformity 𝜎𝐿𝑃𝑃𝐸𝑐𝑢𝑡
 0.5 

Space global CD uniformity 𝜎𝐺𝐶𝐷𝑈𝑠𝑝𝑎𝑐𝑒
 0.7 

Space local CD uniformity 𝜎𝐿𝐶𝐷𝑈𝑠𝑝𝑎𝑐𝑒
 0.7 

Mandrel global CD uniformity 𝜎𝐺𝐶𝐷𝑈𝑚𝑎𝑛𝑑𝑟𝑒𝑙
 0.5 

Mandrel local CD uniformity 𝜎𝐿𝐶𝐷𝑈𝑚𝑎𝑛𝑑𝑟𝑒𝑙
 0.5 

Overlay (model residuals) 𝜎𝑅𝑒𝑠 0.8 

Overlay (total standard deviation) 𝜎𝑂𝑉𝐿  calculated by eq. (12) 

Cut extension over space uniformity 𝜎𝐶𝐷1 calculated by eq. (13) 

Cut extension over mandrel uniformity 𝜎𝐶𝐷2 calculated by eq. (13) 

 

 

As an outcome of this method, it will be possible to calculate the size of an “overlay process window” (OPW) 

at the device level, as defined below, based on actual metrology data. 

 
3. RESULTS AND DISCUSSION 

 

3.1 Stochastic Simulation Results 

 

To verify the analytical expressions derived above, a stochastic simulation was performed for a test case of 

CD1.  One million simulation iterations were performed (with values of each term of equation (1) drawn from 

a Gaussian distribution) and, as expected, good matching was achieved between analytical and simulated 

results for the mean and standard deviation of CD1 within the expected uncertainties.  Consequently, all 

further results will use the analytical models. 

 

3.2 Analytical Model Results 

 

Using the formalism described in section 2 above, the predicted excursion counts for CD1 and CD2 failure 

mechanisms have been analytically calculated as a function of overlay for three different values of 𝜎𝑂𝑉𝐿 as 



defined in equation (12).  The results are shown in Figure 4.  As expected, the CD1 and CD2 results display 

reflection symmetry about zero overlay.   

 

 

 

Figure 4: Log plot of the predicted excursion counts for CD1 and CD2 failure mechanisms as a function of overlay for 

three different values of 𝜎𝑂𝑉𝐿 , displaying the quadratic behavior expected from equation (20). 𝜎𝐶𝐷𝑈𝑐𝑢𝑡
 is fixed at 1.2 nm 

and σ𝐶𝐷𝑈𝑙𝑖𝑛𝑒
 is 0.92 nm.   

 

 We will define an overlay process window (OPW) as the range the overlay errors that keeps our 

predicted failure rate above a certain level.  The sum of excursion counts for CD1 and CD2 as a function of 

overlay is shown in Figure 5, which also displays the results generated by the approximations defined in 

equation (19). In the regime of interest, where overlay is small, the discrepancy between the approximation 

and the accurate expression of equation (18) is negligible.  By setting a process window boundary at 1 ppm, 

upon inspection of Figure 5 we can see that the OPW is about 3.5, 2 and 0.5 nanometers for the cases of  𝜎𝑂𝑉𝐿 

= 0.8, 1.0 and 1.2 nanometers respectively.  It is interesting to note that increases in the stochastics parameter 

𝜎𝑂𝑉𝐿 on the order of Angstroms result in shrinkage of the OPW at the scale of nanometers, indicating the 

criticality of correctly estimating these parameters.  Note that a more complete model would add scenarios 3 

and 4 failure rates as well. 

 



 

Figure 5:  The solid lines display the sum of predicted CD1 and CD2 excursions as a function of overlay for three values 

of σ𝑂𝑉𝐿 when σ𝐶𝐷𝑈𝑐𝑢𝑡
 is 1.2 nm and σ𝐶𝐷𝑈𝑙𝑖𝑛𝑒

 is 0.92 nm.  The dotted lines are the approximated function of equation 

(19).  The process window boundary has been set to 1 ppm.   

 

3.3 Overlay Process Window Results 

 

It is instructive to quantitatively evaluate the dependence of the OPW on stochastics metrology parameters.  

The results are displayed in Figure 6, Figure 7, and Figure 8.  The first two illustrate the OPW dependence 

on 𝜎𝑂𝑉𝐿 and 𝜎𝐶𝐷𝑈𝑐𝑢𝑡
 respectively.  It is noted that OPW diminishes more rapidly with 𝜎𝑂𝑉𝐿 than 𝜎𝐶𝐷𝑈𝑐𝑢𝑡

.  

This is a result of the simple geometric dependence of CD1 on OVL, CDcut and CDline expressed in equation 

(1).  Figure 7 shows the OPW dependence in which 𝜎𝑂𝑉𝐿 remains constant at the default value of 1 nm and 

only the local CDU variances are varied.  Unsurprisingly, the overlay process window also shrinks with 

increasing CD nonuniformity.   

 

 



 

Figure 6:  Overlay process window dependence on σ𝑂𝑉𝐿 for different values of 𝜎𝐶𝐷𝑈𝑐𝑢𝑡
.  All other parameters as in Table 

1. 

 

 

Figure 7:  Overlay process window dependence on 𝜎𝐶𝐷𝑈𝑐𝑢𝑡
 for different values of σ𝑂𝑉𝐿 .  All other parameters as in Table 

1. 

 



 

Figure 8:  Overlay process window dependence on 𝜎𝐶𝐷𝑈𝑙𝑖𝑛𝑒
 for different values of 𝜎𝐶𝐷𝑈𝑐𝑢𝑡

.  All other parameters as in 

Table 1.  

 

 

3.4 EPE Budget 

 

Another use of the above model for EPE failure rates is for EPE budgeting.  As mention above, 𝜎/𝜇 = 0.210 

produces a 1 part per million failure rate, with the ratio 𝜎/𝜇 given by equation (21) for our example use case.  

This can be written as 
𝜎𝐶𝐷1

𝐶𝐷1
= 0.21 =

𝜎𝐶𝐷1

𝐶𝐷1−nominal − ∆𝐶𝐷1
 (22) 

 

where 𝐶𝐷1−nominal is the target value of 𝐶𝐷1 (that is, half of the nominal spacewidth) and ∆𝐶𝐷1 is the total 

global systematic errors in 𝐶𝐷𝑐𝑢𝑡, 𝐶𝐷𝑙𝑖𝑛𝑒, and OVL.  Rearranging this equation, and recognizing that the 

maximum allowed EPE is 𝐶𝐷1−nominal,  

 

𝐸𝑃𝐸𝑚𝑎𝑥 = ∆𝐶𝐷1 +
𝜎𝐶𝐷1

0.21
 (23) 

 

The 0.21 factor comes from the 1 ppm failure rate spec, so that other specs will produce other multiplicative 

factors.  In general, 

 

𝐸𝑃𝐸𝑚𝑎𝑥 = ∆𝐶𝐷1 + 𝑘𝜎𝐶𝐷1
 (24) 

 

where the coverage factor k is 4.75 for the 1 ppm spec case and 6 for the 1 ppb spec, but in general will be 

between 3 and 7.  Note that a value of 3 for the coverage factor is almost an industry standard, even though 

it generally does not convey the desired failure rate probability spec. 

 

 

 



4. CONCLUSIONS 

 

A rigorous approach to overlay lot dispositioning in the stochastics era requires more than just overlay data.  

Stochastic (local) variations in the individual patterning layers combine with systematic (global) variations 

to impact the probability of a failure.  To illustrate how to combine systematic and random errors in edge 

placement, a specific example was chosen:  the cutting of a line/space pattern to produce narrow tip-to-tip 

spacings in a classic complementary lithography scheme.  The basic approach follows these steps. 

 

1. Define the distance metric of interest and a failure criterion for it.  In this case, we defined CD1 as the 

edge overlap of the cut hole to the line being cut.  Failure occurs when 𝐶𝐷1 ≤ 0. 

2. Using basic geometric considerations, write the equation that relates the distance metric to specific 

measures from each individual patterning layer and possibly the overlay between layers.   

3. Interpreting each term in this equation as a random variable, take the variance of the equation.  Be sure 

to consider correlations between terms. 

4. From the variance equation, determine the wafer measurements that are required to define the 

magnitude of each term.  In this case, the line and space CD must be interpreted as a segment CD, the 

segment length set to be the nominal cut feature width.  Be sure to use unbiased measurements when 

possible. 

5. Interpret systematic global variations to be shifts in the mean for each term in the equation, and random 

variations to be a combination of local (stochastics) variations and residuals of the systematic 

signatures. 

6. Assuming a Gaussian distribution (though other distributions are possible), use the cumulative 

distribution function to define the failure probability.  Set a spec for the maximum allowed failure 

probability. 

7. The resulting equations allow for both lot dispositioning based on the predicted failure probability, or 

an EPE budget equation. 

8. Use the resulting equations to explore control trade-offs.  In this example, the overlay process window 

shows how changes in stochastics control affects the maximum overlay error that could be tolerated. 

 

 These steps can be followed for any patterning application, from simple to complex.  Proper 

application yields an accurate expression using only measurable quantities. 
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