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Conclusions
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• We need more than just 3s to understand roughness
– We need the power spectral density (PSD) to understand the 

relationship between LWR and LCDU
• Using biased roughness can be very misleading 

– We need to measure the unbiased roughness
• After litho, resist blur = correlation length
• There is an optimum resist blur for stochastics
• New simple model predicts the optimum resist blur and 

the scaling of minimum LER
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Randomness in Lithography

• Photon count
• PAG positions
• Absorption/acid 

generation
• Polymer chain length
• Blocking position
• Reaction-diffusion
• Dissolution
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The Importance of Correlations
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• White noise:  uncorrelated, each random event is 
independent
– Photon shot noise, absorption, chemical concentration, acid 

generation
– Produces a flat power spectral density (PSD)

• Correlating mechanisms: random events that are not 
independent
– Secondary electron generation, acid generation, reaction-

diffusion, development front propagation
– Lowers (smooths) the PSD on length scales below the 

correlation length (i.e., high frequency roughness)
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Are these edges different?
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All have the same 3s roughness!
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Knowing the roughness standard deviation is not good enough

L = 512 Dx, s = fixed 

x = 10 Dx
H = 0.5

x = 10 Dx
H = 1.0

x = 100 Dx
H = 0.5

x = 0.1 Dx
H = 0.5



The Power Spectral Density
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What Gives the PSD its Shape?
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The Power Spectral Density

Slope ∝ roughness 
exponent H

Variance = area under the curve
(Derived from other three parameters)

Correlation 
Length x
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The Same 3s, but Different PSDs
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x = 10 Dx
H = 0.5

x = 100 Dx
H = 0.5

These PSDs will 
have different 
device feature 
impact 



Example 1: Does etch reduce roughness?
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• Experiment:  Measure roughness before and after etch
– 3s roughness (for long lines) goes down
– What happens to device features?

• We need to look at unbiased PSDs to understand the 
impact of etch on roughness
– Does PSD(0) change?
– How much does etch increase correlation length?
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Before and After Etch: a biased view
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Biased LWR Before Etch: 4.9 nm
Biased LWR After Etch: 3.6 nm 27% reduction

Biased PSD(0) is 
12% lower



Before and After Etch: an unbiased view
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Etch increases the 
correlation length 
(7nm → 13nm)

Unbiased PSD(0) is 
unchanged

Unbiased LWR Before Etch: 3.5 nm
Unbiased LWR After Etch: 2.6 nm 26% reduction
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Does Etch Reduce Roughness?
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• Biased measurement, without noise subtraction, gives 
a false picture since after etch SEM images generally 
have lower noise

• Only unbiased PSD measurement (after noise 
subtraction) gives you the right picture
– In this example, etch increased the correlation length, but 

did not lower PSD(0)
– Within-feature roughness will decrease due to etch, but 

LCDU will remain the same
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Finite-Length Features
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LCDU: Feature-to-feature variation of mean CD

Within-feature roughness
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Conservation of Roughness
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• For all features of the same CD and pitch, for any 
length L,

• Different line lengths partition the total roughness into 
within-feature and feature-to-feature variation
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Conservation of Roughness
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We need to measure s(¥), PSD(0), and x
to understand roughness for device features



Measuring Roughness is Hard
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• We need to measure the PSD parameters to 
understand how roughness impacts device features 
(LWR and LCDU)

• SEM images contain both random and systematic 
errors that bias our results
– Random noise in the image produces white noise
– Systematic field variations (intensity, distortion) increase 

the apparent low-frequency roughness
• Conclusions based on biased roughness 

measurements are often wrong
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What is the EUV Image?
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Here is a typical aerial image from an 
EUV scanner …  or is it?

18nm HP



What is the EUV Image?
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Line-Edge Roughness (Simple Model)
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• Consider a small deviation in resist development rate 
(DR).  The resulting change in resist edge position (x) 
will be approximately

• For some random variation in development rate sR, 
the resulting LER is
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Lithography Information Transfer

ØLithography 
can be 
thought of as 
a sequential 
transfer of 
information
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Mask

Aerial Image

Latent Image

Developed Resist Image

Etched Image

Design
Mask Fabrication

Image Formation

Exposure and PEB

Development

Etch
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Consider Exposure through Development
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• The only source of information is the aerial image
– Subsequent process steps do not add information
– It is possible to add noise (increase s) and lose information 

(decrease gradient), but the signal to noise can never improve

• A fundamental limit of LER is the last term in this sequence 
(you can’t do any better than the information in the image)
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What is the LER limit?
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• The distribution of the number of absorbed photons 
(Nabs) is Poisson

• The gradient of absorbed photons is determined by 
the image log-slope
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What is the LER limit?
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• The best possible LER is then

• How many photons are absorbed?  It depends on the 
volume V you are looking at:
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a = resist absorption coefficient
E = dose (#photons/area) incident on the volume 

At the feature edge:



What is the Correct Volume to Average Over?
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• Two suppositions about the ambit volume V:
• First, 

• Second, after litho: resist blur = correlation length
– Correlation length comes from measurement of the 

roughness power spectral density (PSD)
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3x=V where x = max(polymer size, resist blur)



Complication:  Blur lowers ILS
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• Effective ILS is a function of resist blur
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Impact of Blur on ILS and LER
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CD = 15 nm Optimum Blur:

Diffusion:
xopt ≈ CD/5

Reaction-Diffusion:
xopt ≈ CD/3



Simple Model: Scaling Relationship
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• Using the optimum resist blur,

• This is a mathematical version of the RLS trade-
off

• We can always make it worse!
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Conclusions
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• We need more than just 3s to understand roughness
– We need the power spectral density (PSD) to understand the 

relationship between LWR and LCDU
• Measuring biased roughness can be very misleading 

– We need the unbiased roughness
• After litho, resist blur = correlation length
• There is an optimum resist blur for stochastics
• New simple model predicts the optimum resist blur and 

the scaling of minimum LER
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