More on Stochastics and the Phenomenon of Line-Edge Roughness

FRACTILIA

Chris A. Mack

34th International Photopolymer Science and Technology Conference Chiba, Japan, June 28, 2017

Conclusions

- We need more than just 3σ to understand roughness
 - We need the power spectral density (PSD) to understand the relationship between LWR and LCDU
- Using biased roughness can be very misleading
 - We need to measure the unbiased roughness
- After litho, resist blur = correlation length
- There is an optimum resist blur for stochastics
- New simple model predicts the optimum resist blur and the scaling of minimum LER

Randomness in Lithography

- Photon count
- PAG positions
- Absorption/acid generation
- Polymer chain length
- Blocking position
- Reaction-diffusion
- Dissolution

The Importance of Correlations

- White noise: uncorrelated, each random event is independent
 - Photon shot noise, absorption, chemical concentration, acid generation
 - Produces a flat power spectral density (PSD)
- Correlating mechanisms: random events that are not independent
 - Secondary electron generation, acid generation, reactiondiffusion, development front propagation
 - Lowers (smooths) the PSD on length scales below the correlation length (i.e., high frequency roughness)

Are these edges different?

All have the same 3σ roughness!

Knowing the roughness standard deviation is not good enough

$$\xi = 0.1 \Delta x$$

$$H = 0.5$$

$$L = 512 \Delta x$$
, $\sigma = fixed$

The Power Spectral Density

What Gives the PSD its Shape?

The Power Spectral Density

The Same 3σ, but Different PSDs

Example 1: Does etch reduce roughness?

- Experiment: Measure roughness before and after etch
 - 3s roughness (for long lines) goes down
 - What happens to device features?
- We need to look at unbiased PSDs to understand the impact of etch on roughness
 - Does PSD(0) change?
 - How much does etch increase correlation length?

Before and After Etch: a biased view

Biased LWR Before Etch: 4.9 nm

Biased LWR After Etch: 3.6 nm

27% reduction

Before and After Etch: an unbiased view

Unbiased LWR Before Etch: 3.5 nm Unbiased LWR After Etch: 2.6 nm

26% reduction

Does Etch Reduce Roughness?

- Biased measurement, without noise subtraction, gives a false picture since after etch SEM images generally have lower noise
- Only unbiased PSD measurement (after noise subtraction) gives you the right picture
 - In this example, etch increased the correlation length, but did not lower PSD(0)
 - Within-feature roughness will decrease due to etch, but
 LCDU will remain the same

Finite-Length Features

 $\sigma_{\scriptscriptstyle LWR}(L)$ Within-feature roughness

LCDU: Feature-to-feature variation of mean CD (local CDU)

$$\sigma_{\scriptscriptstyle CDU}(\!L)$$

Conservation of Roughness

• For all features of the same CD and pitch, for any length *L*,

$$\sigma_{CDU}^{2}(L) + \sigma_{LWR}^{2}(L) = \sigma_{LWR}^{2}(\infty)$$

• Different line lengths partition the total roughness into within-feature and feature-to-feature variation

$$\sigma_{CDU}^{2}(L) \approx \frac{PSD(0)}{L} \left[1 - \frac{\xi}{L} \right] \qquad \sigma_{LWR}^{2}(\infty) \approx PSD(0) / \left[(2H + 1)\xi \right]$$

Conservation of Roughness

Measuring Roughness is Hard

- We need to measure the PSD parameters to understand how roughness impacts device features (LWR and LCDU)
- SEM images contain both random and systematic errors that bias our results
 - Random noise in the image produces white noise
 - Systematic field variations (intensity, distortion) increase the apparent low-frequency roughness
- Conclusions based on biased roughness measurements are often wrong

What is the EUV Image?

What is the EUV Image?

Line-Edge Roughness (Simple Model)

• Consider a small deviation in resist development rate (ΔR) . The resulting change in resist edge position (x) will be approximately

$$\Delta x = \frac{dx}{dR} \Delta R$$

• For some random variation in development rate σ_R , the resulting LER is

$$\sigma_{LER} = \frac{\sigma_R}{dR/dx}$$

Lithography Information Transfer

Lithography
can be
thought of as
a sequential
transfer of
information

Consider Exposure through Development

- The only source of information is the aerial image
 - Subsequent process steps do not add information
 - It is possible to add noise (increase σ) and lose information (decrease gradient), but the signal to noise can never improve

$$\sigma_{LER} = \frac{\sigma_R}{dR/dx} \ge \frac{\sigma_m}{dm/dx} \ge \frac{\sigma_h}{dh/dx} \ge \frac{\sigma_{I_{abs}}}{dI_{abs}/dx}$$

• A fundamental limit of LER is the last term in this sequence (you can't do any better than the information in the image)

What is the LER limit?

• The distribution of the number of absorbed photons (N_{abs}) is Poisson

$$\sigma_{N_{abs}} = \sqrt{N_{abs}}$$

• The gradient of absorbed photons is determined by the image log-slope

$$ILS = \frac{d \ln I}{dx} = \frac{1}{N_{abs}} \frac{dN_{abs}}{dx}$$

What is the LER limit?

• The best possible LER is then

Best Case
$$\sigma_{LER} = \frac{\sigma_{I_{abs}}}{dI_{abs} / dx} = \frac{1}{ILS\sqrt{N_{abs}}}$$

• How many photons are absorbed? It depends on the volume *V* you are looking at:

At the feature edge:
$$N_{abs} = \alpha VE$$

 α = resist absorption coefficient

E = dose (#photons/area) incident on the volume

What is the Correct Volume to Average Over?

- Two suppositions about the ambit volume V:
- First,

$$V = \xi^3$$
 where $\xi = \max(\text{polymer size, resist blur})$

- Second, after litho: resist blur = correlation length
 - Correlation length comes from measurement of the roughness power spectral density (PSD)

Complication: Blur lowers ILS

• Effective ILS is a function of resist blur

Diffusion:
$$\frac{\partial \ln I_{eff}}{\partial x} \approx \frac{\partial \ln I}{\partial x} \left(e^{-2(\pi \xi/CD)^2} \right)$$

Reaction-Diffusion:
$$\frac{\partial \ln I_{eff}}{\partial x} \approx \frac{\partial \ln I}{\partial x} \left(\frac{1 - e^{-2(\pi \xi/CD)^2}}{2(\pi \xi/CD)^2} \right)$$

where ξ = diffusion length and CD = half-pitch

From: Chris A. Mack, Fundamental Principles of Optical Lithography, (Wiley: 2007).

Impact of Blur on ILS and LER

Best Case
$$\sigma_{LER} = \frac{1}{ILS_{eff} \sqrt{\alpha E \xi^3}}$$

Optimum Blur:

Diffusion:

$$\xi_{
m opt} \approx {
m CD/5}$$

Reaction-Diffusion:

$$\xi_{\rm opt} \approx {\rm CD/3}$$

Simple Model: Scaling Relationship

• Using the optimum resist blur,

$$\min \sigma_{LER} \propto \frac{1}{NILS\sqrt{\alpha ECD}}$$

- This is a mathematical version of the RLS tradeoff
- We can always make it worse!

Conclusions

- We need more than just 3σ to understand roughness
 - We need the power spectral density (PSD) to understand the relationship between LWR and LCDU
- Measuring biased roughness can be very misleading
 - We need the unbiased roughness
- After litho, resist blur = correlation length
- There is an optimum resist blur for stochastics
- New simple model predicts the optimum resist blur and the scaling of minimum LER

Thank You

FRACTILIA

Fractilia, LLC Austin, Texas 512 887-3646 info@fractilia.com www.fractilia.com