

FRACTILIA

MOx resist formulation, chemistry, and processing impacts on the power spectral density of line-edge roughness

Amrit Narasimhan^a, Chris A. Mack^b, Peter De Schepper^c, Kai Jiang^a, Michael Kocsis^a, Jason Stowers^a, Kazuki Kasahara^d ^aInpria Corporation, 1100 NE Circle Blvd, Corvallis, OR, USA 97330, ^bFractilia, LLC, Austin, TX, USA, ^cInpria Corporation, Kapeldreef 75, Heverlee, Belgium B-3001, ^dJSR Micro, Inc., 1280 N. Mathilda Ave, Sunnyvale, CA 94089, USA

Outline

- A Brief Introduction to MOR & PSD Analysis
- Methodology
- Solvent-Ligand Co-optimization
- Effect of Stack, Etch, & Resist Thickness
- MOR Process Advancements: ESPERT[™]
- Comparison of P32 and P24 exposures
- Summary

MOx Resist Imaging Chemistry

Building Blocks: Reactive molecular metal-oxo-core passivated with radiation sensitive ligands

Radiolysis: Ligands cleave on exposure, deprotecting electrophilic metal centers to form active sites

Hydrolysis: H₂O/OH nucleophiles attack active sites

Condensation: Hydroxylated active sites condense to form oxo-network

Core

The Importance of PSD Analysis

PATTERNING

Mack – SPIE 2020 12498-32 4

The Importance of PSD Analysis

PATTERNING

Methods

- NXE3400 at IMEC
- L/S Reticles
 - P32: IMEC EUVLINES33
 - P24: IMEC TAPES3
- Exposure Information
 - On SOG: Dose meanders at pre-determined best-focus
 - On TiN stack: FEMs
- MetroLER[™] Data Pipeline

ADI SOG Inspection Stack

PATTERNING

TiN Inspection Stack

MOR Solvent-Ligand Co-Optimization

PATTERNING

MOR Solvent Change can Drive Improvement

- Formulation changes over the past year have yielded a significant reduction in AEI defectivity
- These formulation changes are associated with a 5% reduction in uLWR and a 10% increase in Correlation Length, with no significant difference in PSD(0)

More Efficient Ligands Reduce uLWR

FRACTILIA

Resist improvements made via solvent and ligand changes can be additive

PATTERNING

SPIE

12498-32 **9**

How does uLWR change with Stack & Etch?

Solvent

2 3

Ligand

ormulatio

Α

В

How does uLWR change with Stack & Etch?

FormulationLigandSolventA11B12F13

Etch Smooths by Increasing ξ

12498-32 12

AEI

Ox

ADI

Resist 10 nm SOG

35 nm APF

Etch Smooths by Increasing ξ

ſ

AEI

Ox

TiN

ADI

Resist 10 nm SOG

35 nm APF

15 nm O

uLWR vs. Resist Thickness

uLWR vs. Resist Thickness

Resist Thickness: uLWR & Defectivity Trade-off

Line Wiggling vs. Resist Thickness

MOR Process Chemistry: ESPERT™

Dinh, Advanced development methods for high-NA EUV lithography - 12498-4

MOR chemistry enables industry process innovations that boost performance and further reduce CoO for advanced nodes

ESPERT[™] 1: RLS Improvement

- ESPERT[™] 1 apodization yields a different RLS trade-off than the POR wafer process
- The RLS improvement is driven by an increase in Correlation Length
- ESPERT[™] 1 allows for RLS improvement without in-bottle resist modification, preserving material stochastics

ESPERT[™] 2: Ligand Variation

- With the POR develop process, there is a clear relationship between resist radiolytic efficiency and uLWR, but that is not the case with ESPERT[™] 2
- ESPERT[™] 2 reduces bridging defects and widens the defect-free window
- Different process knobs with ESPERT[™] 2 require different process tuning

P32 vs. P24 – POR Process

PATTERNING

• Reduction in uLWR, ξ , PSD(0) at P24

FRACTILIA

- However, we also see an increase in Line Wiggling at P24,
 - same film thickness (~22 nm) for both exposures

ESPERT[™] 2: P24 Optimization

- ESPERT[™] 2 yields a defectivity reduction and an improvement in the ADI defect window
- The benefits of Resist C and ESPERT[™] 2 from P32 also hold at P24

Formulation	Ligand	Solvent
Α	1	1
С	2	1

Summary

- Inpria has made resist improvements via solvent-ligand co-optimization
- Inpria MOR attain low AEI uLWR via etch smoothing of high frequency noise due to increased correlation length
- Resist-thickness driven uLWR improvements persist at AEI
- ESPERT[™] 1
 - improves chemical image contrast at the line edge
 - lower uLWR at lower Dose-to-Size
- ESPERT[™] 2
 - new process knobs for DtS and uLWR
 - new ligand-process co-optimization will be needed for defectivity improvements

PATTERNING

• The Inpria POR process is capable of printing P24 LS at 0.33 NA. Process optimization will make additional improvements

FRACTILIA

12498-32 **23**

Acknowledgements

Thank you to the teams at:

Tokyo Electron Ltd.

... And to all our partners & collaborators

FRACTILIA

Thank You

