Advances in Edge Placement Error Metrology in the Era of Stochastics

Mike Adel, Intellectual Landscapes, Zichron Ya'akov, Israel Chris Mack, Fractilia, Austin, TX October 3, 2023

FRACTILIA COMPUTATIONAL METROLOGY

A short history of overlay and edge placement error...

- In the beginning...
 - Overlay and CD errors were considered, and controlled, separately
- With multipatterning came the era of EPE...
 - Edge Placement Errors (EPE) combined CD errors
 with overlay to determine edge placement failures

- Today is the era of stochastics...
 - Stochastic variations account for more than 50% of EPE budgets
 - What is the proper way to account for, and measure, stochastic contributions to EPE and edge-related failure mechanisms?

Prior Work: EPE Model for Complementary Lithography

Two failure mechanisms:

- An incomplete cut
- Cutting a neighbor feature

Chris A. Mack and Michael E. Adel "Overlay and edge placement error metrology in the era of stochastics", Proc. SPIE 12496, *Metrology, Inspection, and Process Control XXXVII*, 1249609 (2023).

New Stochastic EPE Modeling Approach

1. Write down Geometric equations for EPE (tradition way)

$$CD_1 = \frac{CD_{cut}}{2} - \frac{CD_{line}}{2} - OVL$$

2. Take the Variance of this equation

$$\sigma_{CD_1}^2 = \frac{1}{4} \left(\sigma_{CD_{cut}}^2 + \sigma_{CD_{line}}^2 \right) + \sigma_{OVL}^2$$

3. Find the stochastic contributors to each term

$$\sigma_{OVL}^2 = \sigma_{Res}^2 + \sigma_{LPPE_{cut}}^2 + \sigma_{LPPE_{line}}^2$$

4. Define the failure probability (assume Gaussian distribution)

Probability(
$$CD_1 < 0$$
) $\approx \frac{\sigma}{\sqrt{2\pi\mu}} e^{-\frac{\mu^2}{2\sigma^2}}$

Parameter name	Parameter symbol	Parameter value [nm]
Line CD	CD _{line}	14
Space CD	CD _{space}	14
Mandrel CD (same as Space CD)	CD _{space}	14
Cut CD	CD _{cut}	28
Overlay (varied)	OVL	-7 to +7
Line global CD uniformity	$\sigma_{GCDU_{line}}$	0.6
Line local CD uniformity (20 nm segment)	$\sigma_{LCDU_{line}}$	0.7
Line level wettern pleasant error (20 pps cos)		\circ 1

Every input to the model can be measured

Cut local pattern placement error	$\sigma_{LPPE_{cut}}$	0.5
Space global CD uniformity	$\sigma_{GCDU_{space}}$	0.7
Space local CD uniformity	$\sigma_{LCDU_{space}}$	0.7
Mandrel global CD uniformity	$\sigma_{GCDU_{mandrel}}$	0.5
Mandrel local CD uniformity	$\sigma_{LCDU_{mandrel}}$	0.5
Overlay (model residuals)	σ_{Res}	0.8

The Overlay Process Window

 $C \top \square$

- "Excursion rate" = fraction of instances where either $CD_1 \text{ or } CD_2 \leq 0$
- Assign a maximum allowed excursion rate (e.g., 1 ppm)
- The Overlay Process Window is the range of overlay that keeps the excursion rate below this threshold

Using the Overlay Process Window

CTIL

- What if σ_{OVL} increases?
 - Caused by higher unmodeled residuals, or higher LPPE for the cut of the line segments
- Increase stochastic variation (greater LPPE) reduces the overlay process window
- Angstrom level changes in σ_{OVL} produce nanometer level changes in the overlay process window

SPIE PUV2023

Results Indicate High Sensitivity to Inputs

- Small variations in model inputs cause relatively large variations in the overlay process window
 - Why?
 - Can we characterize this?
- We'll use a Propagation of Uncertainty approach
 - Assume small errors and linear propagation
 - We can derive an exact expression under these assumptions
- Results will allow us to define measurement requirements for model terms (and thus sample size requirements)

Example: Overlay Variation Term

SE = Standard Error, the metrology uncertainty for that term

FRACTILIA

SPIE PUV2023

Numerical Example

X-pitch = 40 nm Image size = 2048x2048 Pixel size = 0.8 nm

- Each image contains about 1,777 contact holes
- Unbiased results for one image:
 - $\sigma_{CD_{cut}}$ = 0.59 nm, $SE(\sigma_{CD_{cut}})$ = 0.011 nm - $\sigma_{PPE_{cut}}$ = 0.45 nm, $SE(\sigma_{PPE_{cut}})$ = 0.008 nm
- Measurement uncertainty scales as $1/\sqrt{\# Holes}$

Results from paper #12750-28, "Improvements in the measurement of local critical dimension uniformity for holes and pillars"

FRACTILIA

SPIE PUV2023

Numerical Example

- Each image contains about 49 lines
- Unbiased results for one image (segment length = 32 nm):
 - $\sigma_{CD_{line}}$ = 0.50 nm, $SE(\sigma_{CD_{line}})$ = 0.008 nm
 - $\sigma_{PPE_{line}}$ = 0.29 nm, $SE(\sigma_{PPE_{line}})$ = 0.005 nm
- Measurement uncertainty scales as $1/\sqrt{\# Lines}$

Pitch = 32 nm Image size = 2048x2048 Pixel size = 0.8 nm

Chris A. Mack, Frieda Van Roey, and Gian F. Lorusso, "Unbiased Roughness Measurements: Subtracting out SEM Effects, part 3", Proc. SPIE 10959, *Metrology, Inspection, and Process Control for Microlithography XXXIII*, 109590P (2019).

Propagation to the OPW

- All individual terms propagate to an uncertainty in σ_{CD_1} and σ_{CD_2}
- Uncertainty in σ_{CD_1} and σ_{CD_2} propagates to uncertainty in the Overlay Process Window based on the slope of the OPW at the failure threshold

$$\Delta OPW = -2 * \left(\mu_{CD_1} / \sigma_{CD_1} \right) * SE(\sigma_{CD_1})$$

For a failure rate threshold of 1 ppm, $2 * (\mu_{CD_1} / \sigma_{CD_1}) = 9.5$ For a failure rate threshold of 1 ppb, $2 * (\mu_{CD_1} / \sigma_{CD_1}) = 12$

Conclusions

- Existing approximate methods for incorporating stochastics into EPE budgets are no longer good enough
 - Rigorous analysis of any given situation allows local (stochastic) + systematic errors to be combined to predict failure mechanisms
- The overlay process window shows how changes in stochastic variations affect the range of allowed overlay errors
 - A similar process window exists for mean CD variations as well
- Propagation of Uncertainty approach translates measurement uncertainty into uncertainty in overlay process window predictions
 - Accurate stochastics metrology is a necessary enabler for overlay control

Edges are random We can still understand them Just not the old way

FRACTILIA

COMPUTATIONAL METROLOGY

Thank You

Fractilia, LLC Austin, Texas 512 887-3646 info@fractilia.com www.fractilia.com

Backup

- Overlay process window for the case including all excursion types CD1, CD2, CD3, & CD4
- All parameters as shown in table 1, with the exception of $\sigma_{OVL} = 0.88$ nm.